Outline

- Pew words on control theory
- Main objective of THE CASCADE
- 4 Technical considerations and proposed solution

THE CASCADE

THEorie du Contrôle Appliquée à la Synchronisation des CommunicAtions DiscrÉtes

Context of THE CASCADE

- 2 Few words on control theory
- 3 Main objective of THE CASCADE
- 4 Technical considerations and proposed solution

Context of THE CASCADE Few words on control theory Main objective of THE CASCADE

Identity

	Programme INS	Projet : THE CASCADE
ANK	Edition 2013	DOCUMENT SCIENTIFIQUE

Acronyme Acronym	THE CASCADE		
Titre du projet	THEorie du Contrôle Appliquée à la Synchronisa- tion des CommunicAtions DiscrEtes		
Proposal title	Control theory for synchronization issues in private communications		
$f Axe(s) \ then matiques/ \ theme(s)$	1. Sécurité et súreté des systèmes numériques		
Type of research	 Basic Research Industrial Research Experimental Development 		
Aide totale demandée: 334361 € Grant request	Durée du projet : 42 months Project duration		
Partenaire coordinateur Coordinator partner/	MILLERIOUX GILLES Centre de Recherche en Automatique de Nancy (CRAN UMR CNRS 7039) Université de Lorraine		

Classes of ciphers

Issues and related WP of THE CASCADE

- WP1: Synchronization (resp: Gilles Millérioux (CRAN))
- WP2: Security (resp: Philippe Guillot (LAGA))
- WP3: Hardware-oriented issues (resp: Julien Francq (ADS))

Context of THE CASCADE

Few words on control theory Main objective of THE CASCADE Technical considerations and proposed solution

People

People involved in the project

Surname	Name	Current Position	PM	Contribution to the project
Partner 1 (CRAN)				
Boukhobza	Taha	PU	7	control theory, graph-oriented
		Université de		approaches for characterizing
		Lorraine		the self-synchronization
Collin	Floriane	MdC	7	control theory, elimination
		Université de		theory, identifiability
		Lorraine		for algebraic attacks
Millerioux	Gilles	PU	20	Main coordinator
		Université de		Scientific manager of Task 1
		Lorraine		control, synchronization,
				hybrid systems
Partner 2 (LAGA)				
Guillot	Philippe	MdC	20	Scientific manager of Task 2
		Université Paris 8		security, Booleans functions,
				cryptography
Phan	Hieu Duong	MdC	11	provable security
		Université Paris 8		
Partner 3 (LIASD)				
El Mrabet	Nadia	MdC	11	cryptography, side-channel
		Université Paris 8		attacks, embedded
				systems, arithmetic
Partner 4 (ADS)				
Francq	Julien	Head of Security, Mathematics,	11	Scientific manager of Task 3
		Applied Cryptography and		expertise in cryptography
		Hardware Team in ADSC	1	and SCADA systems

Table 1: Summary of involved researchers

CRAN (UMR 7039): Centre de Recherche en Automatique de Nancy (Partner 1)

LAGA (UMR 7539): Laboratoire Analyse, Géométrie et Applications (Partner 2)

LIASD (EA 4383): Laboratoire d'Informatique Avancée de Saint-Denis (Partner 3)

イロト イ団ト イヨト イヨト

ADS: Airbus Defence & Space - Cybersecurity (Partner 4)

Pew words on control theory

- 3 Main objective of THE CASCADE
- 4 Technical considerations and proposed solution

Applications of control theory

Models of linear dynamical systems

(Input/output models in continuous-time - Differential equations)

$$a_0 y(t) + a_1 \frac{dy(t)}{dt} + \ldots + \frac{d^n y(t)}{dt^n} = b_0 u(t) + b_1 \frac{du(t)}{dt} + \ldots + b_m \frac{d^m u(t)}{dt^m}$$

(Input/output models in discrete-time - Difference equations)

 $a_0y_k + a_1y_{k+1} + \ldots + y_{k+n} = b_0u_k + b_1u_{k+1} + \ldots + b_mu_{k+m}$

Few words on control theory

Models of linear dynamical systems

(State space models)				
$x[1] = y, x[2] = \frac{dy}{dt} \dots$ or $x_k[1] = y_k, x_k[2] = y_{k+1} \dots$				
Continuous time Discrete time				
$\begin{cases} \frac{dx(t)}{dt} &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{cases} \begin{cases} x_{k+1} &= Ax_k + Bu_k \\ y_k &= Cx_k \end{cases}$				
$with A = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ & & \ddots & & \\ -a_0 & -a_1 & -a_2 & \dots & -a_{n-1} \end{bmatrix}, B = \begin{bmatrix} \vdots \\ 0 \\ b_m \\ \vdots \\ b_0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}$				
$\Psi(\lambda) = det(A - \lambda 1) = \lambda^{n} + \cdots + a_{1}\lambda + a_{0}$				
$\begin{array}{c c} u(t) & x(t) & y(t) \\ \hline \\ u_k & \Sigma & y_k \\ x_k & y_k \end{array}$				

イロト イポト イヨト イヨト

10/40

Models of nonlinear discrete-time dynamical systems

(Differential equations)

 $g(y_k, y_{k+1}, \ldots, y_{k+n}, [u_k, u_{k+1}, \ldots, u_{k+m}]) = 0$

Connection between control theory and ciphering

Connection between control theory and ciphering

Connection between control theory and ciphering

- Pew words on control theory
- Main objective of THE CASCADE
 - 4 Technical considerations and proposed solution

Stream ciphers and dynamical systems

Synchronizing Stream Cipher (SSC)

 $\begin{cases} \mathbf{z}_k = f_{\theta}(\mathbf{z}_{k-1}) \\ c_k = e(\mathbf{z}_k, m_k) \end{cases}$

Self Synchronizing Stream Cipher (SSSC)

$$\left\{ \begin{array}{l} \mathbf{z}_k = f_{\theta}(c_{k-l}, \dots, c_{k-l'}) \\ c_k = e(\mathbf{z}_k, m_k) \end{array} \right.$$

Block cipher in CFB mode

$$\begin{cases} z_k = \mathcal{F}_{\theta}(c_{k-1}, \ldots, c_{k-M}) \\ c_k = e(z_k, m_k) \end{cases}$$

Maurer's approach (1991): use of finite input memory automata

State equations
$$\begin{cases} q_{k+1} = g_{\theta}(q_k, c_k) & q'_{k+1} = g_{\theta}(q'_k, c_k) \\ z_k = h_{\theta}(q_k) & z'_k = h_{\theta}(q'_k) \\ c_k = e(z_k, m_k) & m'_k = d(z'_k, c_k) \end{cases}$$

If g_{θ} is triangular, for $k \geq M$,

Canonical equations
$$\begin{cases} q_{k} = l_{\theta}(c_{k-1}, \dots, c_{k-M}) & q'_{k} = l_{\theta}(c_{k-1}, \dots, c_{k-M}) \\ z_{k} = \mathcal{F}_{\theta}(c_{k-1}, \dots, c_{k-M}) & z'_{k} = \mathcal{F}_{\theta}(c_{k-1}, \dots, c_{k-M}) \\ c_{k} = e(z_{k}, m_{k}) & m'_{k} = d(z'_{k}, c_{k}) \end{cases}$$

If g_{θ} is triangular, for $k \ge M$, $q'_k = q_k \Rightarrow m'_k = m_k$

Example: SSS with triangular function (2004)

▲ロト▲聞と▲臣と▲臣と 臣 めんの

Example: Moustique (2005)

Objectives: design of SSSC with the following features

- Automata with finite input memory
- Non triangular state transition functions

Context of THE CASCADE

- Pew words on control theory
- 3 Main objective of THE CASCADE
- Technical considerations and proposed solution

Linear automata with finite input memory

$$\begin{cases} q_{k} = \underbrace{\mathcal{P}^{M}q_{k-M}}_{k-M} + I_{\theta}(c_{k-1}, \dots, c_{k-M}) & q'_{k} = \underbrace{\mathcal{P}^{M}q'_{k-M}}_{k-M} + I_{\theta}(c_{k-1}, \dots, c_{k-M}) \\ z_{k} = \mathcal{F}_{\theta}(c_{k-1}, \dots, c_{k-M}) & z'_{k} = \mathcal{F}_{\theta}(c_{k-1}, \dots, c_{k-M}) \\ c_{k} = e(z_{k}, m_{k}) & m'_{k} = d(z'_{k}, c_{k}) \end{cases}$$

If *P* is nilpotent, for $k \ge M$, $q'_k = q_k \Rightarrow m'_k = m_k$

Linear automata with finite input memory

... but linearity is not suitable

LPV automata with finite input memory

$$q_{k+1} = P(\rho_k)q_k$$

with

$$\rho_k = \left(\rho_1(\mathbf{C}_k, \ldots, \mathbf{C}_{k-s}), \ldots, \rho_L(\mathbf{C}_k, \ldots, \mathbf{C}_{k-s})\right)^T$$

 \Leftrightarrow

$$\begin{pmatrix} q_{k+1}[1] \\ \vdots \\ q_{k+1}[l] \\ \vdots \\ q_{k+1}[n] \end{pmatrix} = \begin{pmatrix} q_{11} & \cdots & \rho_1(c_k, \cdots, c_{k-s}) & q_{1i} & \cdots & q_{1n} \\ \vdots & & & & & & \\ q_{j1} & \rho_1(c_k, \cdots, c_{k-s}) & \cdots & q_{ji} & \cdots & q_{jn} \\ \vdots & & & & & \\ q_{j1} & q_{n2} & \cdots & \rho_L(c_k, \cdots, c_{k-s}) & \cdots & q_{nn} \end{pmatrix} \begin{pmatrix} q_k[1] \\ \vdots \\ q_k[n] \\ \vdots \\ q_k[n] \end{pmatrix}$$

LPV automata with finite input memory

If $\prod_{l=k}^{l=l=k+M} P(\rho_l) = 0$, for $k \ge M$, $q'_k = q_k \Rightarrow m'_k = m_k$

LPV automata with finite input memory

... but mortality is undecidable

Flatness

Let us consider the Mealy machine

$$\begin{cases} q_{k+1} = f_{\theta}(q_k, m_k) \\ c_k = s_{\theta}(q_k, m_k) \end{cases}$$

Definition

The system is *flat*, if there exists an output c_k , referred to as *flat output*, and a function *I*, such that

$$q_k = l(c_{k-1},\ldots,c_{k-M})$$

Property (left inverse)

If the system is flat, there always exists a finite input memory automaton

$$q_{k+1}' = g(q_k', c_k)$$

whose sequence $\{q'_k\}_{k \ge M}$ coincides with $\{q_k\}_{k \ge M}$

A flat system allows to design an SSSC

Flatness and LPV systems

Let us consider the Mealy machine

$$\begin{cases} q_{k+1} = A_{\theta}(\rho_k)q_k + B_{\theta}(\rho_k)m_k \\ c_k = q_k[i] + m_k \end{cases}$$

Proposition

If the system is flat with flat output c_k , there always exists a function $I_{\rho}(A_{\theta}(\rho_k), B_{\theta}(\rho_k), i)$ such that

$$q_k = l_\rho(c_{k-1},\ldots,c_{k-M})$$

Property (left inverse)

There always exists a finite input memory automaton $(\prod_{l=k}^{l=k+M} P(\rho_l) = 0)$

$$q_{k+1}' = P_{\theta}(\rho_k)q_k' + Q_{\theta}(\rho_k)c_k$$

whose sequence $\{q'_k\}_{k \ge M}$ coincides with $\{q_k\}_{k \ge M}$

Flatness and LPV systems

How to construct a flat system ?

Structured linear systems

$$\Sigma_{\rho}: \begin{cases} q_{k+1} = A(\rho_k)q_k + B(\rho_k)m_k \\ C_k = q_k[i] \end{cases}$$
$$\Sigma_{\Lambda}: \begin{cases} q_{k+1} = I_Aq_k + I_Bm_k \\ C_k = q_k[i] \end{cases}$$

where

- Only the sparsity pattern of the matrices $I_A \in \mathbb{R}^{n \times n}$ and I_B is known ('0' or '1' entries)
- To the '1' entries are assigned the time-varying parameter ρ_k^i of the LPV system

Example:

Flatness for structured linear systems and LPV systems

generic flatness for the LPV system Σ_ρ

 \Leftrightarrow

Structural flatness of the structured system Σ_{Λ}

Digraph

A digraph associated to Σ_{ρ} is a couple $(\mathcal{V}, \mathcal{E})$ where

- V is the vertex set associated to Σ_ρ
- *ε* is the edge set associated to Σ_ρ

Example:

⇒ We have derived conditions *C*0, *C*1, *C*2 to guarantee that the vertex v_i which corresponds to $c_k = q_k[i]$ is a flat output

Summary

- Choose a dimension n (number of components of the state q_k) and a number of edges n_a (number of non zero entries of I_A and I_B)
- Construct a digraph fulfilling the flatness conditions C0, C1, C2

Summary

Derive from the adjacency matrix the matrices I_A and I_B

 Replace some of the '1' entries by nonlinear functions φ(c_k,..., c_{k-s}) (S-boxes)

Maurer's approach (1991): use of finite input memory automata

• Derive the finite automaton with finite input memory

Maurer's approach (1991): use of finite input memory automata

State equations
$$\begin{cases} q_{k+1} = g_{\theta}(q_k, c_k) & q'_{k+1} = g_{\theta}(q'_k, c_k) \\ z_k = h_{\theta}(q_k) & z'_k = h_{\theta}(q'_k) \\ c_k = e(z_k, m_k) & m'_k = d(z'_k, c_k) \end{cases}$$

If g_{θ} is triangular, for $k \ge M$, NO LONGER REQUIRED

Canonical equations
$$\begin{cases} q_k = l_{\theta}(c_{k-1}, \dots, c_{k-M}) & q'_k = l_{\theta}(c_{k-1}, \dots, c_{k-M}) \\ z_k = f_{\theta}(c_{k-1}, \dots, c_{k-M}) & z'_k = f_{\theta}(c_{k-1}, \dots, c_{k-M}) \\ c_k = e(z_k, m_k) & m'_k = d(z'_k, c_k) \end{cases}$$

Conclusion

- A method to construct SSSC with non triangular next state transition functions
- Based on control theory (flatness), LPV systems, Graph approach
- Investigation of the most suitable dimension *n*, type of nonlinearities (S-boxes), number and position of S-boxes in the state transition matrix
- Security
- Effective implementation

Conclusion

