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Classes of ciphers

ciphers
public—key private—key
block ciphers stream ciphers

T~

synchronous self—synchronous
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Issues and related WP of THE CASCADE

@ WP1: Synchronization (resp: Gilles Millérioux (CRAN))
@ WP2: Security (resp: Philippe Guillot (LAGA))

@ WP3: Hardware-oriented issues (resp: Julien Francq (ADS))
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Few words on control theory

Applications of control theory
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Few words on control theory

Models of linear dynamical systems

( Input/output models in continuous-time - Differential equations)

ay(t) +a 20 4 dd{nt) bou(t) + by &0 1 4 bmddtu,sz

(Input/output models in discrete-time - Difference equations)

oYk + aYki1 + - ..+ Yirn = bolk + B1Uky1 + ... + BmUkym

u(t) y(t)

— = Y — =
Uk Yk




Few words on control theory

Models of linear dynamical systems

( State space
M=y x2 = %, or X1 = Vi Xkl = Viey 1+

Continuous time Discrete time

di:].([ﬁ = Ax(t) + Bu(t) { Xkp1 = Axg + Bug
y(t) = ox() Yk = Ox
0 1 0 0 :
0 0 1 0 S 0
with A = ,B=| bm |,C=[0...0
0 o o 0 1
=) TF =& e —an—1
by

U(A) =det(A— A1) ="+ faA+ g

u(t) x(t) y(1)

— Y —

Uy Xk Yk




Few words on control theory

Models of nonlinear discrete-time dynamical systems

( Differential equations)

IVks Yksts - - - s Yotns [Uk, Uk - - -5 Ukem]) = O

(State space equations)

{Xk+1 = f(xk, [uk])
Yo o = h(xk[uk])

Triangular next-state transition function f

f1(Uk)
2 (x[1])
£ (xel 1], xu[2])

(1], .. ., x[)

v

Uk Xk

Yk
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Few words on control theory

Connection between control theory and ciphering

ykd Uk Y Yk Xy, Uy
B S R LAy 1.

—_— - e e e e e e e e e e e e e e e —
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Few words on control theory

Connection between control theory and ciphering

74 Uk Y Yk :
e R R U

—_— - e e e e e e e e e e e e e e e —
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Few words on control theory

Connection between control theory and ciphering

>
=y
M Q Cr ' Qs M
decipher

cipher
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Stream ciphers and dynamical systems

mp

Ck = m
C(Zk.nzk)‘*ﬂd(zk.ck) k

L ) 2, = fo( Zr—1)

’_T“fe(zk'—l)‘

Synchronizing Stream Cipher (SSC)

cp =e( Zg,my)

|fg(2k71,)‘_"

. Ck — T
. O TES
)
z) ' : z) z, = fe(CA—l ..... Cr_1r)
cp =e( zj,,my)
folck—1:cp_pr) fﬁ(ckfl"’ck—l’b

Self Synchronizing Stream Cipher (SSSC)
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Block cipher in CFB mode

shift
register

block

cipher

I

my

Fo(Ck—1, .-+, Ck—m)
e(zk,mk)

Zk
Ck
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Maurer’s approach (1991): use of finite input memory automata

>
— ————»| observer [—»

s Ok Ck Qe M
. decipher
cipher
Qi1 = Go(G;C)  Geyr = 96(Gk, Ck)
State equations { zx = he(qk) Zi = he(qy)
Ck = ez, my) m, = d(z,c)

If go is triangular, for k > M,

g = lo(Ck—1,--,Ck—m) g = lo(Ck—1,---,Ck—m)
Canonical equations  z« = Fo(Ck—1,...,Ck—m) Z = Fo(Ckety---Chm)
o = e(zk, M) mi = d(z, cx)

If gp is triangular, for kK > M, g = gk = Mk = MK
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Example: SSS with triangular function (2004)

)
e e E—— e

2k

Ck /
\
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Example: Moustique (2005)

|
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lay i [Kli-1 [q: ') lq; i o o
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Main objective of THE CASCADE

Objectives: design of SSSC with the following features

@ Automata with finite input memory

@ Non triangular state transition functions
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Technical considerations and proposed solution

e Technical considerations and proposed solution

22/40



Technical considerations and proposed solution

Linear automata with finite input memory

T ey e
My Qk Ck Gi- M
- decipher
cipher
ki1 = Po+ Qo Gy = Pgi+ Qo
zx = he(qy) ze = he(qy)
Ck = e(zk, my) m, = d(z,ck)

If P is nilpotent, for kK > M,

0 0

o = PMerw+ lo(Ck_1,-..,Ch_m) g = P+ l(cko1,...,C_m)
Zxk = Fo(Ck—1,...,Ck—m) zx = Fo(Ck=1,...,Ck—m)

Ck = e(zk, mk) m;( = O'(Z,/(7 Ck)

If P is nilpotent, for k > M, qx = Qx = mj = M
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Technical considerations and proposed solution

Linear automata with finite input memory

... but linearity is not suitable
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Technical considerations and proposed solution

LPV automata with finite input memory

pa
— ———| observer —»

my fep Ck ] Q> M,
decipher

cipher

Qk+1 = P(px)qk

with
-
pk = (p1(Cky -+ Ck—s)s - pL(Chy -+ Ck—s))
=
k411 11 e P1(Cs ey Ck—s) i S Gin k1]
qk+-1[’] = q/.-1 prcg, - -« =Ck—s) . gji . jn qk-[i]
qk+-1 [n CI,.71 An2 S pL(Cks - Ck—g) - ann qk'[n]
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Technical considerations and proposed solution

LPV automata with finite input memory

>
— ——— observer —»

m C qy, m,
‘ ‘qk ‘ decipher o
cipher
Gt = Plp)gk+ Qo) Gt = Plpk) gk + Qok)cx
ze = ho(qk) zi = ho(qy)
Ck = e(zx, mk) m, = d(z,ck)

IfN=KMP(p) =0, for k > M,

0 0
G = Wkw+/o(ck4,---yckw) G = NZMPONGem

+lo(Ck—1,...,Ck—m)
Zk Fo(Ck—1,- -+, Ck—m) zi = Fo(Ck—1,---,Ck-m)
e = e(zk,mk) m, = d(z,cx)

I M= ™MP(p)) = 0, for k > M, gk = gk = my = M



Technical considerations and proposed solution

LPV automata with finite input memory

... but mortality is undecidable
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Technical considerations and proposed solution

Flatness

Let us consider the Mealy machine

Q1 = To(Qi, M)
Cx = So(Qk, mx)

The system is flat, if there exists an output cx, referred to as flat output, and a
function /, such that

g = I(Ck=1,-..,Ck—m)

Property (left inverse)

If the system is flat, there always exists a finite input memory automaton

G = 9(a )

whose sequence {qj }x>m coincides with {qx }xk>m

o
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A flat system

allows to design an SSSC

29/40



Technical considerations and proposed solution

Flatness and LPV systems

Let us consider the Mealy machine

{ Q1 = Ao(pk)qk + Bo o) M
Cx = qk[i] + m« my Ok Ck

If the system is flat with flat output ck, there always exists a function
Ip(Ag(pk), Bg(pk), I) such that

A = lp(Ck—1,-..,Ck—m)

Property (left inverse)

There always exists a finite input memory automaton (N,-f*"P(p,) = 0)

Qi1 = Polpi)ak + Qo(pr)ck

whose sequence {qj }k>m coincides with {qx }x>m

4
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Technical considerations and proposed solution

Flatness and LPV systems

How to construct a flat system ?
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Technical considerations and proposed solution

Structured linear systems

s ) Gt = Alpr) g + B(pi) mi
p - -
o = qkli]
s ) Gk = IaQk + Iemi
Lo = adi
where
@ Only the sparsity pattern of the matrices /4 € R"*" and Ig is known ('0’ or
1’ entries)
@ To the '1’ entries are assigned the time-varying parameter p}, of the LPV
system
Example:

1 p 0
A= (5 %) o= ().
1 1 0
- ) a-)



Technical considerations and proposed solution

Flatness for structured linear systems and LPV systems

generic flatness for the LPV system ¥,
&

Structural flatness of the structured system X,
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Technical considerations and proposed solution

Digraph

A digraph associated to X, is a couple (V, £) where
@ Vs the vertex set associated to X,
@ £ is the edge set associated to -,

A= (5 %) 800 = (5).
(0 o)

Example:

= We have derived conditions CO0, C1, C2 to guarantee that the vertex v;
which corresponds to ¢k = gx[/] is a flat output
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Technical considerations and proposed solution

Summary

@ Choose a dimension n (number of components of the state qx) and a
number of edges n, (number of non zero entries of /4 and Ig)

@ Construct a digraph fulfilling the flatness conditions CO0, C1, C2

35/40



Technical considerations and proposed solution

Summary

@ Derive from the adjacency matrix the matrices /4 and /g

Gt = laQ + lem | _
ok = akli] e

OO0 OO =+ —=
—_

1
1
1
1
1
1
1

[ = RN
R = N
—~— 0000 =
OCO00O0O =
@
Il
coococoo-=

@ Replace some of the "1’ entries by nonlinear functions (¢, . . ., Ck—s)

(S-boxes)
11 1 11 11 1
oy 1 1 1 1 1 0
0 1 1 0 0 0 O 0
=A B m
{ o Qk[i](pk)qk+ PIMe Apy=|0 1 1 0 0 0 0f.Bp)=]0
0 p2 1 1 0 0 0 0
o 1 1 1 1 0 0 0
o 1t 1 1 1 1 0 0
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Technical considerations and proposed solution

Maurer’s approach (1991): use of finite input memory automata

@ Derive the finite automaton with finite input memory

pu
e ————| observer —#

. m
mk - i Ck decipher o
cipher
Q1 = Plp)ak + Q_(Pk)ck Qi1 = Plox)agk + O(Pk)ck
zc = ho(qk) = qkli] e = he(qk) = akli]
Ck = e(zk,mk) mj( = d(Z,/(,Ck)

It N=5"P(p)) = 0, for k > M, GUARANTEED

0 0
QG = kam+/e(ck4,---yckfm G = ﬂf%ﬁ_wf

+lo(Ck—1y. .., Ck—m)
Zxk = Fo(Ck—1,...,Ck—m) zy = Fo(Ck—1,...,Ck—m)
Ck = e(zk, mk) m; = d(Z,'(, Ck)
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Technical considerations and proposed solution

Maurer’s approach (1991): use of finite input memory automata

pa
e ————| observer —»

m o) Q. M,
‘ ; % ’ decipher o
cipher
Qks1 = go(qk7 Ck) q;/(+1 = 99(ql/<: Ck)
State equations { z = hg(qk) ze = ho(qy)
e = e(zk,mg) mi = d(z,c)

If go is triangular, for kK > M, NO LONGER REQUIRED

QG = lo(Ck—1,...,Ck—m) G = lo(Ck—1,...,Ck-m)
Canonical equations Zxk = fg(Ck_1 ey Ck—M) Z;( = fg(Ck_1 Sy Ck—M)
e = e(zk, mk) me = d(z,ck)
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Technical considerations and proposed solution

Conclusion

@ A method to construct SSSC with non triangular next state transition
functions

@ Based on control theory (flatness), LPV systems, Graph approach

@ Investigation of the most suitable dimension n, type of nonlinearities
(S-boxes), number and position of S-boxes in the state transition matrix

@ Security

o Effective implementation
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Conclusion
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